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Abstract. It has recently become clear that a large category of materials exhibit an identical,
nonlinear elastic signature [1]. These materials (rocks, sand, cement, concrete and ceramics)
have been termed nonlinear mesoscopic elastic (NME) materials, in contrast to the well-
known nonlinear atomic elastic (AE) materials, where the traditional theory of elasticity can
be used to describe their elastic properties. In this work we describe a model in the quasi–
static limit of slow dynamics, one of the most intriguing nonlinear phenomena of these NME
materials.

INTRODUCTION

There is a class of materials whose elastic properties cannot be explained by clas-
sical Landau elasticity theory [2]. Hysteresis and point memory in quasi–static measure-
ments of stress as a function of strain, a non-classical nonlinear elasticity in dynamic
measurements and relaxation effects termed slow dynamics on time scale of 102 – 104

sec are the principal features of this class of materials. These materials are in contrast
to AE materials. The difference between these two categories of materials is both in the
manifestation and the origin of their nonlinear responses. Elasticity of AE arises from
atomic-level forces between atoms and molecules and they can be described by the tradi-
tional theory of elasticity. In contrast, the NME materials contain soft features contained
in a hard matrix termed the ”bond system” where the elastic nonlinearity arises.

Recent dynamical stress–stain measurements [3] draw attention to the presence of
broad time scales in the elastic response of rocks and other materials. These experi-
ments are complementary to [4] creep that we call quasi–static slow dynamics. In an
experiment applying a constant force one observes a logarithmic recovery in time.

The purpose of this paper is to study the effects of the temperature on these systems
numerically and analytically and to reproduce the slow dynamical response seen in the
NME materials.
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THE MODEL

A phenomenological model termed the DMG (Dynamical McCall Guyer model)
has been developed that describes most of the nonlinear features seen in dynamical ex-
periments [5]. The model proposed in this paper is a generalization of the DMG model
to slow dynamics where the response of the system to a fluctuating thermal environment
has been included in order to study the approach of the system to equilibrium. In the
DMG model a rock is represented as a chain of N particles (rigid units) connected by
hysteretic elastic elements (bond system) that describe the mesoscopic nonlinear elastic
properties. Two quantities are used in the model, the displacement ui

�
t � , describing the

displacement for the i � th particle and ηi
�
t;ui � ui � 1 � ui � 1 � the state variable associated

with i � th elastic units describing the nonlinear behavior of the system [5].
In this work we added a stochastic force to this system. The thermal noise is a

perturbation of the system assumed to drive the slow dynamics. Therefore the thermal
fluctuations that drive the displacement u

�
t � must be small. In this limit of low tem-

perature the displacement can be neglected in the dynamics of ηi, and are therefore
uncoupled from the u

�
t � equation. The equations for ui

�
t � and ηi

�
t � under a force F

become simpler as a result. The thermal and mechanical equilibrium length of the chain
under the forcing F is L

�
t;F ��� uN � u1 � N F � b∑N � 1

i � 1 	 ηi 
 � t � , [5] where 	 ηi 
 � t � is the
ensemble average. Its behavior can be studied by analyzing separately the 	 ηi 
 � t � of
each elastic element in the chain. To introduce the temperature in this system we have
added stochastic noise,the Langevine force fs

�
t;T � , with amplitude proportional to the

temperature T and inversely proportional to the damping term τη [6]:

η̈i � η̇i

τη
��� αi � βiηi � η3

i � fs
�
t;T � (1)

where

αi � tanh 
 k � � fc � i � F ��� � tanh 
 k � � fo � i � F ���
2

(2)

βi � tanh 
 k � � fc � i � F ����� tanh 
 k � � fo � i � F ���
2

(3)

The parameter b and fo � fc determine the nonlinear behavior of the unit [5] and are
different for each elastic unit in the chain. The state variable is driven by a potential
W
�
η ��� α � η � 1 � 2β � η2 � 1 � 4η4, whose shape depends on fo � fc so it will be different

for each elastic unit.
In this work we attempt to reproduce observations of placing a small strain ( �

10 � 6) on a sample removing it and then follow the creep evolution of the material. This
translates in the model to applying an external force Fext to the chain and analyzing the
the time evolution of the chain’s length once the external force is removed to study its
approach to equilibrium.
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RESULTS

The time evolution of the average, 	 ηi 
 � t � , can be analytically determined and
written in terms of probabilities:

	 ηi 
 � t � �
�

dηi

�
dη �i ηi P

�
ηit � η �i0;F � 0 � fo � fc � P0

�
η �i;Fext � fo � i � fc � i � (4)

where P0
�
η �i;Fext � fo � fc � is the thermal equilibrium distribution for ηi in the first part

of the simulation where a Fext is applied to the chain. P
�
ηit � η �i0;F � 0 � fo � fc � , con-

ditional probability, is the probability to have a value of ηi in dηi at time t if at time
t � � 0, when the external force is removed, η is equal to η �i. Both of these distributions
can be analytically calculated by solving the Fokker–Planck equations [6]. In solving
the Fokker-Planck equation for P and P0 solutions, we have calculated the solution for

	 ηi 
 � t � in the limit of t � ∞ and low temperature as [6],

	 ηi 
 � t � � η0
�
τη � T � exp � � t

τi
�
T � fo � i � fc � i ����� (5)

Eq.5 represents the time evolution of the state variable, in response to a step change
in the applied external forced, in terms of a spectrum of relaxation times (τn). The
relaxation time τi that characterizes the approach to equilibrium is a function (with fixed
temperature and damping) of the potential W

�
η; fo � i � fc � i � that is different for each unit in

the chain, as one can see in Fig.1. If the potential is symmetric (Fig.1a where fo � � fc �
� 0 � 7) and the temperature is low compared to the barrier potential, the unit reaches
equilibrium slowly. The unit reaches equilibrium quickly and the relaxation time is
therefore small if the potential is asymmetric as shown in Fig.1b. The time evolution of
the η averages has been calculated as an ensemble average over 5000. The beginning
values for each ensemble have been chosen randomly from the probability distribution
P0
�
η � ;Fext � fo � fc � of η before removing the external force.

The state variable for the chain of 600 elements was calculated as the sum of all
state variables of each unit. The fo � fc for each unit were chosen using a uniform distri-
bution in PM space [5]. Each 	 ηi 
 was fitted with an exponential and the spectrum of
relaxation times was calculated. Fig.1c shows a set of relaxation times that characterizes
the return to F � 0 to equilibrium as broadly distributed. The state variable for the chain

	 η 

�
t ��� L

�
F � 0 � shows a logarithmic recovery (quasi–static slow dynamics) in Fig.1d.

CONCLUSIONS

A generalization of the DMG model where a fluctuating thermal environment is
included has been introduced and studied numerically. The numerical results of this
new model SDMG (Stochastic thermal Dynamical McCall and Guyer) have reproduced
observations and the behavior expected from the theory. In particular the results here
presented show that the slow dynamics of the hysteretic elastic systems can be described
including the thermal forces in the DMG model in the quasi–static limit.
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FIGURE 1. a) fo � � fc � � 0 � 7: the potential W
�
η � is symmetric and the � η � �

t � once removed external
force reaches equilibrium quickly; b) asymmetric potential ( fo � � 0 � 9 and fc � � 0 � 01) where equilibrium
is reached very fast. c) Spectrum of relaxation times for a chain of 600 elements ; d) the ensemble average
of state variable for the chain in semi logarithmic scale.

A description of the dynamic response in terms of slow dynamics is the natural
next step in this work, step that is the subject of current research started in collaboration
with S.Habib and K. Heitmann at Los Alamos.
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